
Securing Serverless

Pouya Ghotbi

What Changes and What
Doesn’t

What is Serverless?

3

Serverless services simplify the
management and scaling of
cloud applications by shifting
undifferentiated operational tasks to
the cloud provider so development
teams can focus on writing code
that solve business problems

Business logic

Messaging &

Orchestration

Compute

Physical Infrastructure

Storage & Databases

APIC
u

st
o

m
e
r

C
lo

u
d

P
ro

v
id

e
r

Why serverless
T A K E F U L L A D V A N T A G E O F T H E C L O U D T O M O D E R N I Z E A P P L I C A T I O N S
A N D A C C E L E R A T E I N N O V A T I O N

4

No infrastructure

provisioning,

no management

Automatic scaling Pay for value Highly available

and secure

Serverless is the fastest way to build modern apps
S M A L L A P P C O M P O N E N T S L O O S E L Y C O U P L E D T H R O U G H E V E N T S

5

→

Highly responsive,
fault tolerant
asynchronous
applications

Agent

Unicorn.Contracts

Unicorn.Properties.Web

Contracts functionContracts API

Contracts table

Properties

Web API

Customer

Agent

Search function

Approval function

Properties table Publication

evaluation

event handler

Unicorn Properties

event bus

Property images

S3 bucket

Shared responsibility model

6

IaaS Serverless

Types of serverless services

7

Compute

• Functions-as-a-Service (FaaS)
- AWS Lambda, Azure Functions

• Serverless containers
- AWS Fargate, Google Cloud Run

• Edge functions
- Cloudflare Workers, AWS

Lambda@Edge

Storage & Databases

• Object storage
- Amazon S3, Azure Blob Storage

• Serverless databases
- Amazon DynamoDB, Azure

Cosmos DB
- Firebase Realtime Database

Events & Messaging

• Event buses & queues
- Amazon EventBridge, Azure

Event Grid, Google Eventarc

• Message queues
- Amazon SQS, Google Pub/Sub,

Azure Service Bus

Identity & Security

• Identity providers
- Amazon Cognito, Firebase Auth

• Secrets management
- AWS Secrets Manager, Google

Secret Manager

Application Orchestration

• Workflow engines
- AWS Step Functions, Azure

Durable Functions

• Backend-as-a-Service
- Firebase, Supabase

What else is different?

ToolingEphemerality Fine-grained

control

Diffused perimeter

What stays the same?

Securing data MonitoringQuality code Least privilege

10

What Changes What Stays the Same

You don’t manage infrastructure
You still need secure coding

practices

IAM and event triggers are the

attack surface
Least privilege is still critical

Logs come from services, not OS

agents

You still need to monitor and

alert

OWASP Top 10 – Serverless interpretation

11

S1-Function Event Data
Injection

S2-Broken
Authentication

S3-Insecure Serverless
Deployment

S4-Over-Privileged
Function Permissions

S5-Inadequate Function
Monitoring and Logging

S6-Insecure Third-Party
Dependencies

S7-Improper Exception
Handling

S8-Misconfigured CORS

S9-Insecure CI/CD
Configuration

S10-Lack of Security

Example: Node.js Preinstall Attack in Serverless
Deployments

Context

• What it is:

• Malicious `preinstall` scripts in NPM packages
execute during function deployment.

• Why it's dangerous:

• Runs before runtime monitoring kicks in, often
undetected in CI/CD pipelines.

• Real-world impact:

• Attackers exfiltrate secrets, scan environments, or
embed persistent payloads.

• Why serverless is at risk:

• Serverless platforms often install dependencies
during deployment with limited visibility.

Mitigations

- Audit and pin all dependencies

 - Use package-lock.json to lock dependency
trees

 - Scan builds with tools like Snyk or npm audit

 - Disable lifecycle scripts in deployment (e.g. --
ignore-scripts)

12

Serverless security best practices

13

Use authentication and
authorization
mechanisms

Data encryption and
integrity

Monitoring, logging, and
configuration
management

Denial of service and
infrastructure protection

A sample use case…

Amazon CloudWatch AWS CloudTrail AWS Config AWS X-Ray

AWS Shield

DDoS protection

Amazon CloudFront

AWS WAF

XSS rules

SQLi rules

Other OWASP top 10

Amazon API Gateway

Authorization

CORS

Basic validation

Throttling

Endpoint selection

Resource policies

Encrypt cache

AWS Lambda

Input validation

Function policy

Execution role

Minimize dependencies

Vulnerability scanning
Amazon S3

Amazon DynamoDB

Amazon RDS

Encryption via

AWS KMS

Encryption via

AWS KMS

Encryption via

AWS KMS

Key takeaways

Serverless shifts the
attack surface, not the

responsibility

Secure your code,
identity, and
configuration

Automate and
monitor everything

Build security into
every event trigger

and permission model

15

Thank you!

linkedin.com/in/pouyaghotbi

Pouya Ghotbi

	Slide 1: Securing Serverless
	Slide 2
	Slide 3: What is Serverless?
	Slide 4: Why serverless
	Slide 5: Serverless is the fastest way to build modern apps
	Slide 6: Shared responsibility model
	Slide 7: Types of serverless services
	Slide 8: What else is different?
	Slide 9: What stays the same?
	Slide 10
	Slide 11: OWASP Top 10 – Serverless interpretation
	Slide 12: Example: Node.js Preinstall Attack in Serverless Deployments
	Slide 13: Serverless security best practices
	Slide 14: A sample use case…
	Slide 15: Key takeaways
	Slide 16

